Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7538, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985755

RESUMO

Polyploidization is a major driver of genome diversification and environmental adaptation. However, the merger of different genomes may result in genomic conflicts, raising a major question regarding how genetic diversity is interpreted and regulated to enable environmental plasticity. By analyzing the genome-wide binding of 191 trans-factors in allopolyploid wheat, we identified like heterochromatin protein 1 (LHP1) as a master regulator of subgenome-diversified genes. Transcriptomic and epigenomic analyses of LHP1 mutants reveal its role in buffering the expression of subgenome-diversified defense genes by controlling H3K27me3 homeostasis. Stripe rust infection releases latent subgenomic variations by eliminating H3K27me3-related repression. The simultaneous inactivation of LHP1 homoeologs by CRISPR-Cas9 confers robust stripe rust resistance in wheat seedlings. The conditional repression of subgenome-diversified defenses ensures developmental plasticity to external changes, while also promoting neutral-to-non-neutral selection transitions and adaptive evolution. These findings establish an LHP1-mediated buffering system at the intersection of genotypes, environments, and phenotypes in polyploid wheat. Manipulating the epigenetic buffering capacity offers a tool to harness cryptic subgenomic variations for crop improvement.


Assuntos
Epigenômica , Triticum , Triticum/genética , Triticum/metabolismo , Histonas/metabolismo , Epigênese Genética , Genoma de Planta/genética
2.
Nat Commun ; 14(1): 7465, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978184

RESUMO

Transposable elements (TEs) comprise ~85% of the common wheat genome, which are highly diverse among subgenomes, possibly contribute to polyploid plasticity, but the causality is only assumed. Here, by integrating data from gene expression cap analysis and epigenome profiling via hidden Markov model in common wheat, we detect a large proportion of enhancer-like elements (ELEs) derived from TEs producing nascent noncoding transcripts, namely ELE-RNAs, which are well indicative of the regulatory activity of ELEs. Quantifying ELE-RNA transcriptome across typical developmental stages reveals that TE-initiated ELE-RNAs are mainly from RLG_famc7.3 specifically expanded in subgenome A. Acquisition of spike-specific transcription factor binding likely confers spike-specific expression of RLG_famc7.3-initiated ELE-RNAs. Knockdown of RLG_famc7.3-initiated ELE-RNAs resulted in global downregulation of spike-specific genes and abnormal spike development. These findings link TE expansion to regulatory specificity and polyploid developmental plasticity, highlighting the functional impact of TE-driven regulatory innovation on polyploid evolution.


Assuntos
Elementos de DNA Transponíveis , Triticum , Elementos de DNA Transponíveis/genética , Triticum/genética , Regulação da Expressão Gênica , Poliploidia , Transcriptoma , RNA
4.
Nat Commun ; 13(1): 6940, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376315

RESUMO

The success of common wheat as a global staple crop was largely attributed to its genomic diversity and redundancy due to the merge of different genomes, giving rise to the major question how subgenome-divergent and -convergent transcription is mediated and harmonized in a single cell. Here, we create a catalog of genome-wide transcription factor-binding sites (TFBSs) to assemble a common wheat regulatory network on an unprecedented scale. A significant proportion of subgenome-divergent TFBSs are derived from differential expansions of particular transposable elements (TEs) in diploid progenitors, which contribute to subgenome-divergent transcription. Whereas subgenome-convergent transcription is associated with balanced TF binding at loci derived from TE expansions before diploid divergence. These TFBSs have retained in parallel during evolution of each diploid, despite extensive unbalanced turnover of the flanking TEs. Thus, the differential evolutionary selection of paleo- and neo-TEs contribute to subgenome-convergent and -divergent regulation in common wheat, highlighting the influence of TE repertory plasticity on transcriptional plasticity in polyploid.


Assuntos
Elementos de DNA Transponíveis , Triticum , Elementos de DNA Transponíveis/genética , Triticum/genética , Genoma de Planta/genética , Poliploidia , Diploide , Evolução Molecular
5.
Plant Commun ; 3(4): 100304, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35605195

RESUMO

Triticeae species, including wheat, barley, and rye, are critical for global food security. Mapping agronomically important genes is crucial for elucidating molecular mechanisms and improving crops. However, Triticeae includes many wild relatives with desirable agronomic traits, and frequent introgressions occurred during Triticeae evolution and domestication. Thus, Triticeae genomes are generally large and complex, making the localization of genes or functional elements that control agronomic traits challenging. Here, we developed Triti-Map, which contains a suite of user-friendly computational packages specifically designed and optimized to overcome the obstacles of gene mapping in Triticeae, as well as a web interface integrating multi-omics data from Triticeae for the efficient mining of genes or functional elements that control particular traits. The Triti-Map pipeline accepts both DNA and RNA bulk-segregated sequencing data as well as traditional QTL data as inputs for locating genes and elucidating their functions. We illustrate the usage of Triti-Map with a combination of bulk-segregated ChIP-seq data to detect a wheat disease-resistance gene with its promoter sequence that is absent from the reference genome and clarify its evolutionary process. We hope that Triti-Map will facilitate gene isolation and accelerate Triticeae breeding.


Assuntos
Evolução Molecular , Genoma de Planta , Melhoramento Vegetal , Poaceae/genética , Triticum/genética
6.
Genome Res ; 31(12): 2276-2289, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34503979

RESUMO

More than 80% of the wheat genome consists of transposable elements (TEs), which act as major drivers of wheat genome evolution. However, their contributions to the regulatory evolution of wheat adaptations remain largely unclear. Here, we created genome-binding maps for 53 transcription factors (TFs) underlying environmental responses by leveraging DAP-seq in Triticum urartu, together with epigenomic profiles. Most TF binding sites (TFBSs) located distally from genes are embedded in TEs, whose functional relevance is supported by purifying selection and active epigenomic features. About 24% of the non-TE TFBSs share significantly high sequence similarity with TE-embedded TFBSs. These non-TE TFBSs have almost no homologous sequences in non-Triticeae species and are potentially derived from Triticeae-specific TEs. The expansion of TE-derived TFBS linked to wheat-specific gene responses, suggesting TEs are an important driving force for regulatory innovations. Altogether, TEs have been significantly and continuously shaping regulatory networks related to wheat genome evolution and adaptation.

7.
Plant Cell ; 33(4): 865-881, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33594406

RESUMO

Wheat (Triticum aestivum) has a large allohexaploid genome. Subgenome-divergent regulation contributed to genome plasticity and the domestication of polyploid wheat. However, the specificity encoded in the wheat genome determining subgenome-divergent spatio-temporal regulation has been largely unexplored. The considerable size and complexity of the genome are major obstacles to dissecting the regulatory specificity. Here, we compared the epigenomes and transcriptomes from a large set of samples under diverse developmental and environmental conditions. Thousands of distal epigenetic regulatory elements (distal-epiREs) were specifically linked to their target promoters with coordinated epigenomic changes. We revealed that subgenome-divergent activity of homologous regulatory elements is affected by specific epigenetic signatures. Subgenome-divergent epiRE regulation of tissue specificity is associated with dynamic modulation of H3K27me3 mediated by Polycomb complex and demethylases. Furthermore, quantitative epigenomic approaches detected key stress responsive cis- and trans-acting factors validated by DNA Affinity Purification and sequencing, and demonstrated the coordinated interplay between epiRE sequence contexts, epigenetic factors, and transcription factors in regulating subgenome divergent transcriptional responses to external changes. Together, this study provides a wealth of resources for elucidating the epiRE regulomics and subgenome-divergent regulation in hexaploid wheat, and gives new clues for interpreting genetic and epigenetic interplay in regulating the benefits of polyploid wheat.


Assuntos
Epigênese Genética , Sequências Reguladoras de Ácido Nucleico , Estresse Fisiológico/genética , Triticum/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Histonas/genética , Histonas/metabolismo , Lisina/genética , Lisina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/fisiologia
8.
aBIOTECH ; 2(4): 357-364, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36311809

RESUMO

A chromosome-level genome assembly of the bread wheat variety Chinese Spring (CS) has recently been published. Genome-wide identification of regulatory elements (REs) responsible for regulating gene activity is key to further mechanistic studies. Because epigenetic activity can reflect RE activity, defining chromatin states based on epigenomic features is an effective way to detect REs. Here, we present the web-based platform Chinese Spring chromatin state (CSCS), which provides CS chromatin signature information. CSCS includes 15 recently published epigenomic data sets including open chromatin and major chromatin marks, which are further partitioned into 15 distinct chromatin states. CSCS curates detailed information about these chromatin states, with trained self-organization mapping (SOM) for segments in all chromatin states and JBrowse visualization for genomic regions or genes. Motif analysis for genomic regions or genes, GO analysis for genes and SOM analysis for new epigenomic data sets are also integrated into CSCS. In summary, the CSCS database contains the combinatorial patterns of chromatin signatures in wheat and facilitates the detection of functional elements and further clarification of regulatory activities. We illustrate how CSCS enables biological insights using one example, demonstrating that CSCS is a highly useful resource for intensive data mining. CSCS is available at http://bioinfo.cemps.ac.cn/CSCS/. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-021-00048-z.

9.
Plant J ; 101(1): 237-248, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494994

RESUMO

High-throughput technology has become a powerful approach for routine plant research. Interpreting the biological significance of high-throughput data has largely focused on the functional characterization of a large gene list or genomic loci that involves the following two aspects: the functions of the genes or loci and how they are regulated as a whole, i.e. searching for the upstream regulators. Traditional platforms for functional annotation largely help resolving the first issue. Addressing the second issue is essential for a global understanding of the regulatory mechanism, but is more challenging, and requires additional high-throughput experimental evidence and a unified statistical framework for data-mining. The rapid accumulation of 'omics data provides a large amount of experimental data. We here present Plant Regulomics, an interface that integrates 19 925 transcriptomic and epigenomic data sets and diverse sources of functional evidence (58 112 terms and 695 414 protein-protein interactions) from six plant species along with the orthologous genes from 56 whole-genome sequenced plant species. All pair-wise transcriptomic comparisons with biological significance within the same study were performed, and all epigenomic data were processed to genomic loci targeted by various factors. These data were well organized to gene modules and loci lists, which were further implemented into the same statistical framework. For any input gene list or genomic loci, Plant Regulomics retrieves the upstream factors, treatments, and experimental/environmental conditions regulating the input from the integrated 'omics data. Additionally, multiple tools and an interactive visualization are available through a user-friendly web interface. Plant Regulomics is available at http://bioinfo.sibs.ac.cn/plant-regulomics.


Assuntos
Bases de Dados Genéticas , Genoma de Planta/genética , Plantas/genética , Plantas/metabolismo , Genômica , Software , Transcriptoma/genética
10.
Genome Biol ; 20(1): 139, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307500

RESUMO

BACKGROUND: Bread wheat is an allohexaploid species with a 16-Gb genome that has large intergenic regions, which presents a big challenge for pinpointing regulatory elements and further revealing the transcriptional regulatory mechanisms. Chromatin profiling to characterize the combinatorial patterns of chromatin signatures is a powerful means to detect functional elements and clarify regulatory activities in human studies. RESULTS: In the present study, through comprehensive analyses of the open chromatin, DNA methylome, seven major chromatin marks, and transcriptomic data generated for seedlings of allohexaploid wheat, we detected distinct chromatin architectural features surrounding various functional elements, including genes, promoters, enhancer-like elements, and transposons. Thousands of new genic regions and cis-regulatory elements are identified based on the combinatorial pattern of chromatin features. Roughly 1.5% of the genome encodes a subset of active regulatory elements, including promoters and enhancer-like elements, which are characterized by a high degree of chromatin openness and histone acetylation, an abundance of CpG islands, and low DNA methylation levels. A comparison across sub-genomes reveals that evolutionary selection on gene regulation is targeted at the sequence and chromatin feature levels. The divergent enrichment of cis-elements between enhancer-like sequences and promoters implies these functional elements are targeted by different transcription factors. CONCLUSIONS: We herein present a systematic epigenomic map for the annotation of cis-regulatory elements in the bread wheat genome, which provides new insights into the connections between chromatin modifications and cis-regulatory activities in allohexaploid wheat.


Assuntos
Montagem e Desmontagem da Cromatina , Metilação de DNA , Código das Histonas , Elementos Reguladores de Transcrição , Triticum/genética , Evolução Biológica , Epigenômica , Genoma de Planta , Plântula/metabolismo , Triticum/metabolismo
11.
Plant J ; 97(2): 368-377, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30307069

RESUMO

The phytohormone abscisic acid (ABA)-induced leaf senescence facilitates nutrient reuse and potentially contributes to enhancing plant stress tolerance. However, excessive senescence causes serious reductions in crop yield, and the mechanism by which senescence is finely tuned at different levels is still insufficiently understood. Here, we found that the double mutant of core enzymes of the polycomb repressive complex 2 (PRC2) is hypersensitive to ABA in Arabidopsis thaliana. To elucidate the interplay between ABA and PRC2 at the genome level, we extensively profiled the transcriptomic and epigenomic changes triggered by ABA. We observed that H3K27me3 preferentially targets ABA-induced senescence-associated genes (SAGs). In the double, but not single, mutant of PRC2 enzymes, these SAGs were derepressed and could be more highly induced by ABA compared with the wild-type, suggesting a redundant role for the PRC2 enzymes in negatively regulating ABA-induced senescence. Contrary to the rapid transcriptomic changes triggered by ABA, the reduction of H3K27me3 at these SAGs falls far behind the induction of their expression, indicating that PRC2-mediated H3K27me3 contributed to long-term damping of ABA-induced senescence to prevent an oversensitive response. The findings of this study may serve as a paradigm for a global understanding of the interplay between the rapid effects of a phytohormone such as ABA and the long-term effects of the epigenetic machinery in regulating plant senescence processes and environmental responses.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Epigênese Genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Complexo Repressor Polycomb 2 , Proteínas Repressoras/genética , Estresse Fisiológico , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Nucleic Acids Res ; 46(18): e107, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29931324

RESUMO

Genetic diversity in plants is remarkably high. Recent whole genome sequencing (WGS) of 67 rice accessions recovered 10,872 novel genes. Comparison of the genetic architecture among divergent populations or between crops and wild relatives is essential for obtaining functional components determining crucial traits. However, many major crops have gigabase-scale genomes, which are not well-suited to WGS. Existing cost-effective sequencing approaches including re-sequencing, exome-sequencing and restriction enzyme-based methods all have difficulty in obtaining long novel genomic sequences from highly divergent population with large genome size. The present study presented a reference-independent core genome targeted sequencing approach, CGT-seq, which employed epigenomic information from both active and repressive epigenetic marks to guide the assembly of the core genome mainly composed of promoter and intragenic regions. This method was relatively easily implemented, and displayed high sensitivity and specificity for capturing the core genome of bread wheat. 95% intragenic and 89% promoter region from wheat were covered by CGT-seq read. We further demonstrated in rice that CGT-seq captured hundreds of novel genes and regulatory sequences from a previously unsequenced ecotype. Together, with specific enrichment and sequencing of regions within and nearby genes, CGT-seq is a time- and resource-effective approach to profiling functionally relevant regions in sequenced and non-sequenced populations with large genomes.


Assuntos
Epigênese Genética/fisiologia , Epigenômica/métodos , Especiação Genética , Variação Genética/genética , Tamanho do Genoma/fisiologia , Sequenciamento Completo do Genoma/métodos , Biologia Computacional/métodos , Genoma/genética , Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular/métodos , Oryza/classificação , Oryza/genética , Análise de Sequência de DNA/métodos , Transcriptoma , Triticum/classificação , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...